Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation.

نویسندگان

  • R L Ilaria
  • R G Hawley
  • R A Van Etten
چکیده

STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR-->AAA and R290QQ-->AAA), two in the DNA-binding domain (E437E-->AA and V466VV-->AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/triangle up53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, triangle up53C. Stable expression of either the WKR or triangle up53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3-dependent proliferation and granulocyte colony-stimulating factor (G-CSF)-dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF-dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMATOPOIESIS Dominant Negative Mutants Implicate STAT5 in Myeloid Cell Proliferation and Neutrophil Differentiation

STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced ST...

متن کامل

Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells.

Signal transducers and activators of transcription (STATs) have been reported to play a critical role in the differentiation of several myeloid cell lines, although the importance of STATs in the differentiation of primary human hematopoietic cells remains to be established. Terminal eosinophil differentiation is induced by interleukin-5 (IL-5), which has also been demonstrated to activate STAT...

متن کامل

Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras.

Hyperactivation of Ras is one of the most common abnormalities in acute myeloid leukemia. In experimental models, Ras inhibits myeloid differentiation, which is characteristic of leukemia; however, the mechanism through which it disrupts hematopoiesis is poorly understood. In multipotent FDCP-mix cells, Ras inhibits terminal neutrophil differentiation, thereby indefinitely extending their proli...

متن کامل

Down-regulation of RXRalpha expression is essential for neutrophil development from granulocyte/monocyte progenitors.

Neutrophil granulocytes (Gs) represent highly abundant and short-lived leukocytes that are constantly regenerated from a small pool of myeloid committed progenitors. Nuclear receptor (NR) family members are ligand-activated transcription factors that play key roles in cellular proliferation and differentiation processes including myelopoiesis. Retinoid X receptor alpha (RXRalpha) represents the...

متن کامل

Critical role of STAT5 activation in transformation mediated by ZNF198-FGFR1.

The 8p11 myeloproliferative syndrome is an aggressive disorder caused by FGFR1 fusion proteins resulting from a subset of acquired translocations that target chromosome band 8p11. These chimeric proteins have constitutive FGFR1 tyrosine kinase activity and are believed to deregulate hemopoietic development in a manner analogous to BCR-ABL in chronic myeloid leukemia. Here we have studied the ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 93 12  شماره 

صفحات  -

تاریخ انتشار 1999